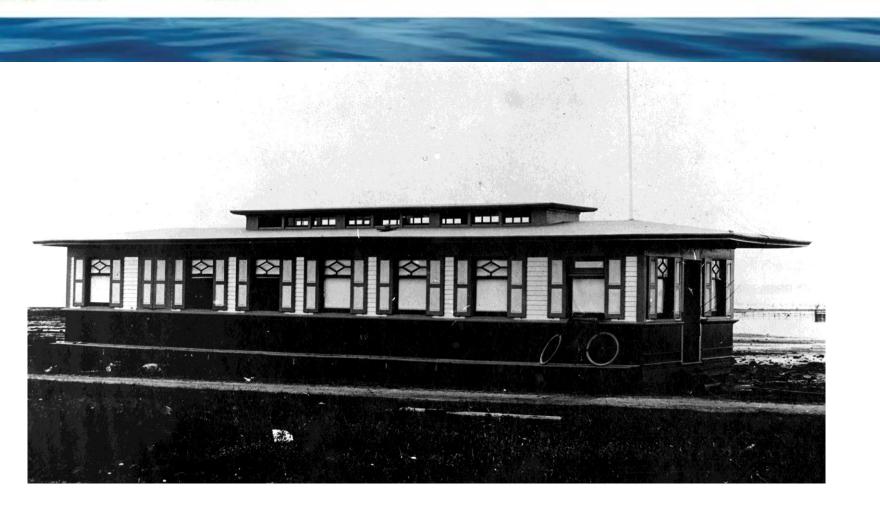

Some Principles of Eco-toxicology: Its all about the Risk

Prepared by
Dr. Les Burridge
St. Andrews Biological Station (SABS)



Canada's First Marine Biological Station 1899

New SABS Facilities (2011-2012) Including 24,000 ft2 Wet Lab

Outline

Basics
Sources of Pollutants
Aquaculture
Other "culture"
Industry
Municipal wastes
Oil & Gas
Questions

Some basics

Everything is toxic; The Dose makes the Poison.

Hazards are Determined; Risks are Assessed.

We will never prove there is no effect

A non-target organism is the environmental equivalent of an innocent bystander. These organisms are not the target of the treatment but can reasonably be expected to be exposed to the chemical during or after treatment.

LC50: The concentration of a chemical that, when in the environment of a test organism, is <u>estimated</u> to be fatal to 50% of those organisms <u>under the stated conditions</u>.

- An LC50 must include a time which indicates how long the organism has to be exposed.
- Also nice to have an idea of "confidence" in the estimate.

Hazards are determined

- Loaded gun
- Nuclear power plant

Risks are assessed

- Will I be shot here or today?
- ❖Do I really need an iodine pill?

Hazards:

- Is it lethal?
- If it doesn't kill are there Sub-lethal effects?
 - Growth
 - Reproduction
 - Biochemistry

- <u>Species</u> Is it there? Is it sensitive?
- <u>Chemical</u> Is it there? What concentration? Is it toxic?
- •<u>Time</u> Are the animal and chemical together at the same time? For how long?

Risk (probability of exposure)

- •The key question is: how much, or what concentration, do non-target organisms really "see" and for how long?
 - •How long is it in water?
 - •Is the sensitive organism there?
 - •If its bound to sediment is it available to other organisms?

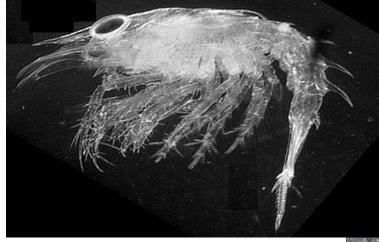
UNITS

What is a part per million/billion/trillion?

Count to 30

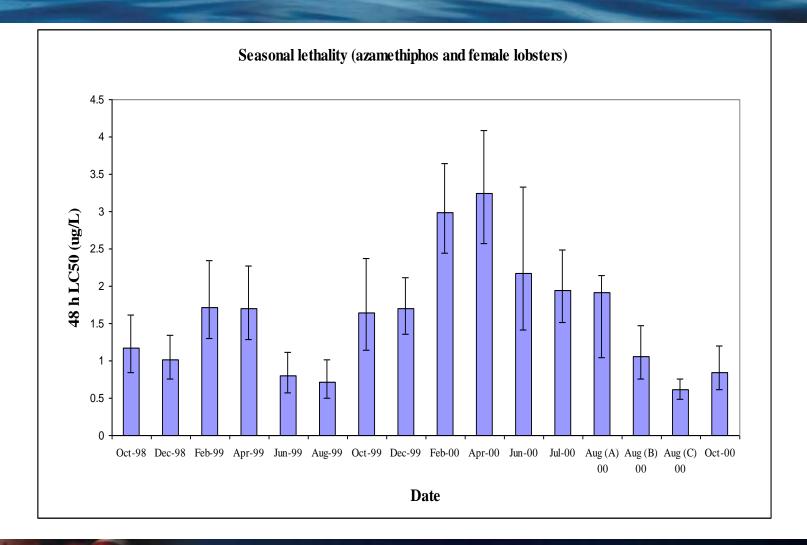
Shot glasses and swimming pools???

Whose shot?



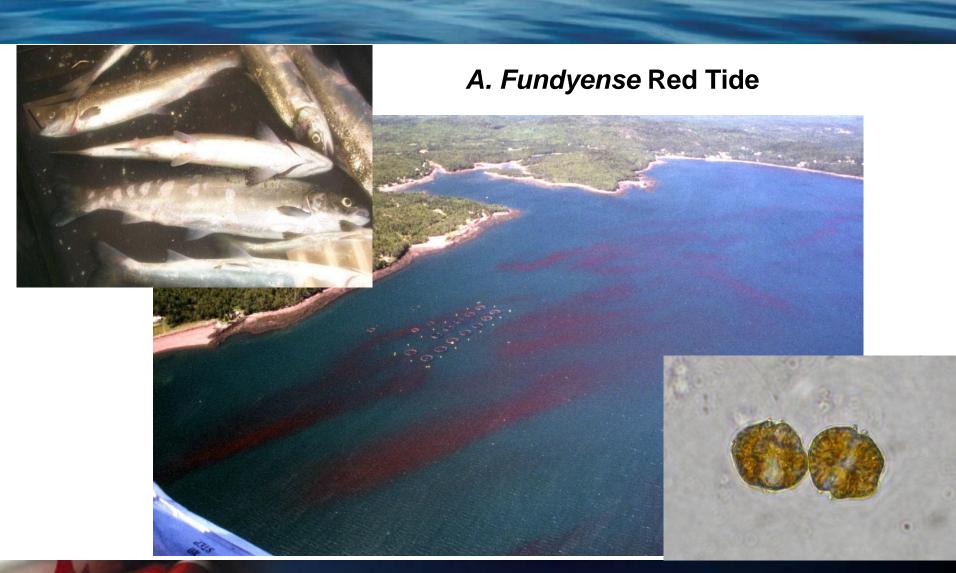
Salmon Aquaculture

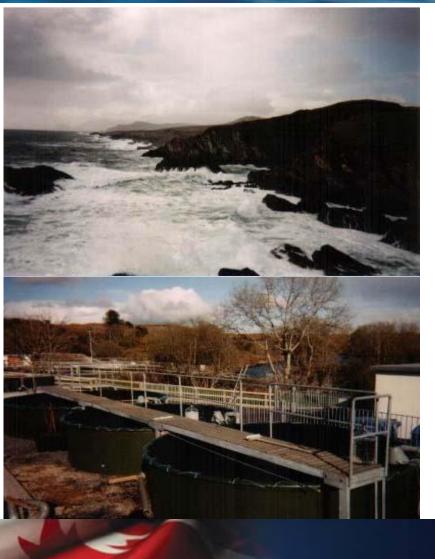
Pesticides are designed to kill something.

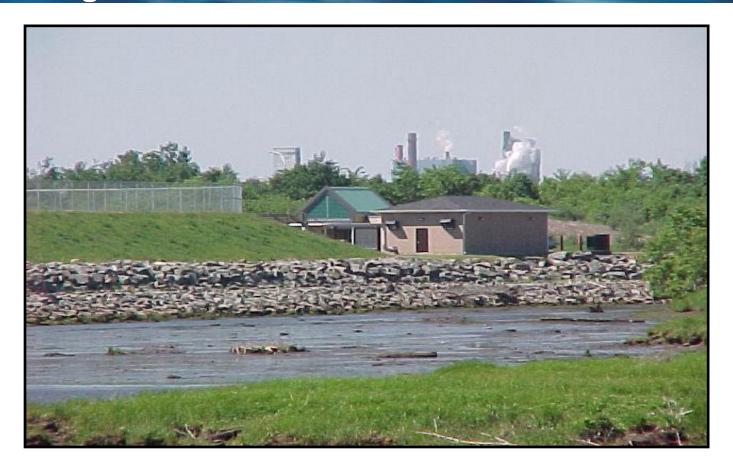

American Lobster

Percent mortality of adult lobsters after repeated short-term exposures to Salmosan® (azamethiphos).

		% Mortality after Exposure #								
Conc.	Exposure							•		
<u>(μg/L)</u>	<u>(min.)</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
0.51	15	0	0	0	0	0	0	0	0	0
0.51	30	0	0	0	0	0	0	0	0	0
0.51	60	0	0	0	0	0	0	0	0	0
0.51	120	0	0	0	0	0	0	0	0	0
1.03	15	0	0	0	0	0	0	0	0	0
1.03	30	0	0	0	0	0	0	0	0	0
1.03	60	0	0	0	0	0	0	0	0	0
1.03	120	0	0	0	0	0	0	0	0	0
11	15	0	0	0	0	0	0	0	0	0
11	30	0	0	0	0	0	0	10	10	20
23.8	15	0	0	0	0	0	0	0	0	60
23.8	30	0	0	40	60	60	60	60	60	80


Treatment	N	% Mortality	% Survivors to Spawn
<u>1997 Fall</u>			
Control	24	0	96
10μg/l x 4	24	13	90
0.06 μg/l x 14 d	24	8	100
<u>1998 Spring</u>			
Control	21	0	95
5 μg/l x 4	24	8	90
$10 \mu g/l \times 4$	23	43	46*
1999 Spring			
Control	24	0	100
$10 \mu g/1 \times 3$	48	48	84
2001 Spring			
Control	10	0	100
$10 \mu g/l \times 4$	10	100	
$5 \mu g/1 \times 4$	10	10	67
$2.5 \mu g/1 \times 4$	10	0	100
1.25 μg/l x 4	10	0	90


Sublethal effects of emamectin benzoate



Endocrine Disrupting Substances (Gender Benders)

Sewage Treatment/Industrial Effluents/Pesticides

Pharmaceuticals in the Environment

Feminization of fish in lab at < 1 ng/L (Metcalfe et al., 2005)

Reproductive failure in fish in a lake at 5-6 ng/L (Kidd et al, 2007)

Human daily dose >20 ug, 0.3 ug/kg

ug/kg

ng/L parts per trillion

EE2 concs in Canadian municipal wastewater 0.2 to 14 ng/L

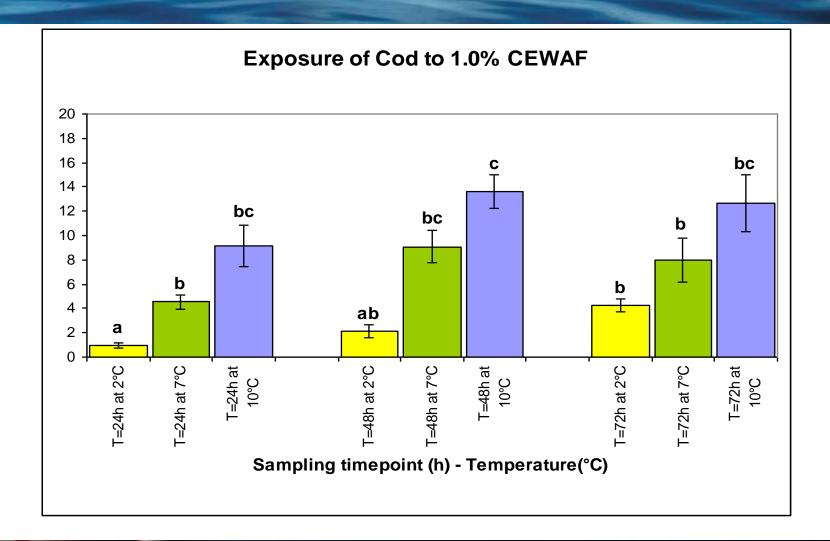
Environment Canada Environnement Canada Assessing the risks to fish exposed to ethinylestradiol (EE2)

Oil and Gas **Production and Transport**

Oil Spills

Produced Water

Atlantic Cod



Effects on eggs

Absence of Evidence is not Evidence of Absence

Sir Martin Rees (Astronomer)

