# Developing a Regional Monitoring Framework for the Saint John Harbour



Kelly Munkittrick

Tim Arciszewski

Susan Farquharson

Canadian Rivers Institute
University of New Brunswick







# **Outline**



- CWN Background
- Consortium process
  - What
  - Where
  - Why
  - When
  - How

bringing water research to life

# **Canadian Water Network**

- Network of Centres of Excellence (NCE)
  - Hub: University of Waterloo
- Response to Walkerton Tragedy (2000)
- Cross-disciplinary studies
  - Biologists, chemists, hydrologists, engineers,









#### Delivery through three integrated national programs

Protecting
Watersheds
and Ecosystems

Protecting Public Health

Ensuring Sustainable Water Infrastructure

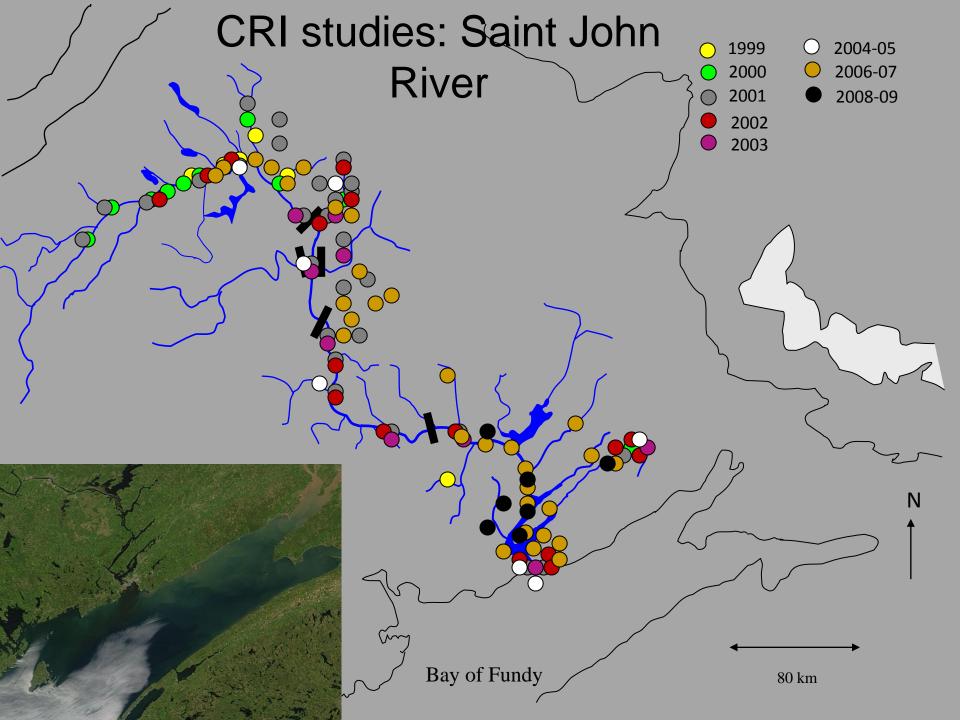
# Watershed Consortia

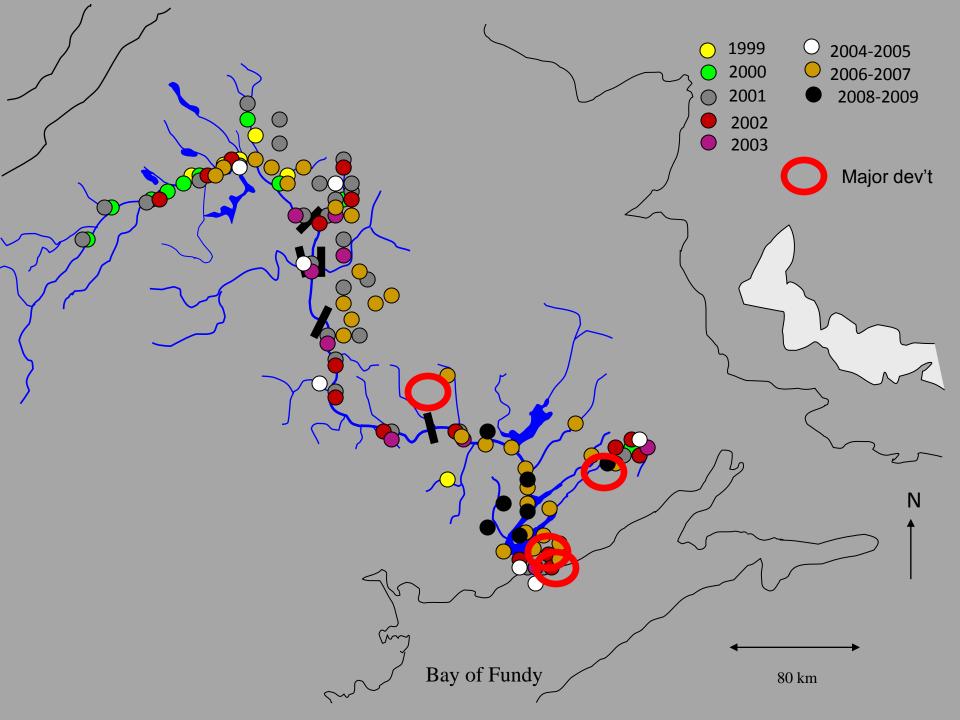
- What are they?
  - Canadian Water Network (CWN) initiative
    - Protecting watersheds theme
  - Process for large scale monitoring
    - Regions, watersheds, political units
  - Partnership of stakeholders
  - Pooling/sharing resources
    - More efficient monitoring
  - Developing regional standards, methods, etc.

# **Important Notes**

- Will not replace existing monitoring requirements
  - Looks for synergies with existing monitoring requirements
  - Reallocate existing resources
  - Develop and use regional reference sites
- Consistent monitoring
- End-user driven
  - Knowledge pull vs. research push




# **Need for Watershed Consortia**


- As environmental assessment exists now:
  - Site (local) focus
  - Short term studies
  - EIA endpoints (what is measured)
    - Proponent specific
- Project approval process
  - Not an apparatus of environmental protection
  - Duinker and Greig 2006

## **Need for Watershed Consortia**

- 'Culture of practice'
  - 1. No common collection philosophy
    - Collected inconsistently
    - Different endpoints, methods, detection limits
  - 2. Raw data not easily accessed and used
  - 3. (In)Applicability of academic research

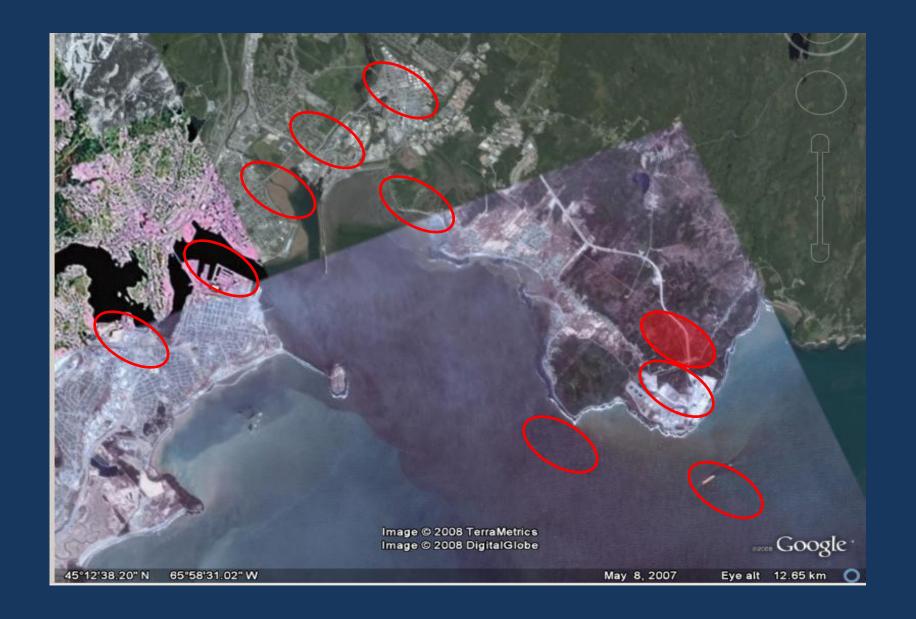
 Limits on regional (cumulative) assessments





# Overall Goals of the Consortium

- Overcome weaknesses of project-specific assessments
  - Move towards cumulative effects assessment
- Develop a standardized approach
  - Accessible, current, complete data
  - Regional datasets and baselines
- Provide data to detect unpredicted changes


# Goals: In the next 3-5 years...

- Establish a core level of consistency for
  - sample station selection
  - indicator selection
  - sampling methods, frequency
- Background contamination levels
- Potential impact zones associated with activities
- Thresholds of impacts
- 3-5 regions in Canada

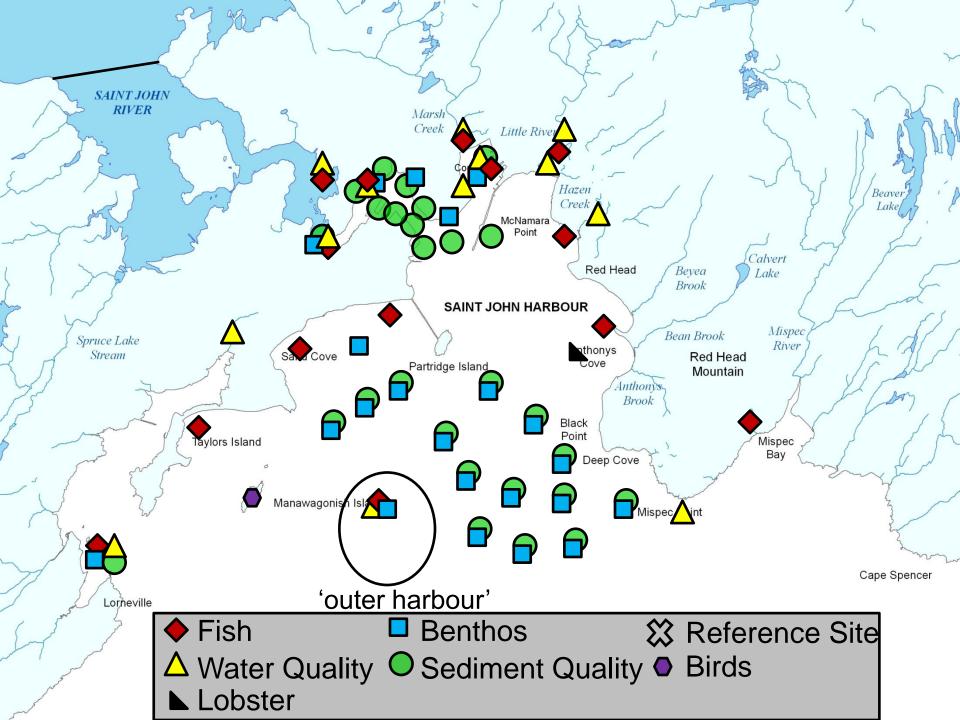
# Saint John Consortium

- Where
  - Saint John Harbour
  - Operational harbour since 1700s
  - Large industrial facilities
    - Oil Refinery
    - Pulp mills
    - Brewery
  - Sewage issues
  - 'East coast energy hub'
    - LNG terminal





## Saint John Consortium


- Key steps
  - Develop Terms of Reference
  - Understand current monitoring in the harbour
  - Identify data needs
    - From end-users
  - Develop research questions
    - RFP for academics
    - Research proposals to fill data/method gaps

# The Saint John Harbour Environmental Monitoring Partnership (SJH-EMP)

- ACAP Saint John
- Aquila Tours
- Bay Ferries Ltd
- Canadian Coast Guard
- Canaport LNG (Repsol)
- Emera, Brunswick Pipeline
- Emera, Bayside Power
- Enterprise Saint John
- Environment Canada (EC)
   Environmental Stewardship
- Fisheries and Oceans Canada

- Fundy North Fishermen Association
- Irving Oil
- JD Irving
- NB Environment
- Port Authority
- Potash Corp N. B. Division
- Saint John Board of Trade
- City of Saint John (Water)
- Saint John Waterfront Development

| Reasons for monitoring           | Timing       | Site                          |  |  |  |  |  |
|----------------------------------|--------------|-------------------------------|--|--|--|--|--|
| Condition of approval to operate | Regular      | Fixed                         |  |  |  |  |  |
| Condition of EIA                 | Regular      | Fixed                         |  |  |  |  |  |
| Government monitoring program    | Regular      | Fixed                         |  |  |  |  |  |
| Protect public concern           | Regular      | Fixed                         |  |  |  |  |  |
| Dredging requirement             | Regular      | Variable (within small areas) |  |  |  |  |  |
| Gulfwatch                        | Annual       | Fixed                         |  |  |  |  |  |
| Regulatory decisions             | Occasional   | Fixed                         |  |  |  |  |  |
| Spills or releases               | Occasional   | Fixed                         |  |  |  |  |  |
| Research                         | Occasional   | Variable                      |  |  |  |  |  |
| Disposal                         | Intermittent | Variable (to be fixed)        |  |  |  |  |  |
| Patchy data                      |              |                               |  |  |  |  |  |



#### Chemical/physical Biological

| Effluent toxicity | Temperature                            | Metals                 | Mussel contaminants |
|-------------------|----------------------------------------|------------------------|---------------------|
| Air emissions     | "Coliforms"                            | PAHs                   | Lobster settling    |
| Water levels      | TSS                                    | PCBs                   | Benthic community   |
| Current           | Salinity                               | DDD                    | Adult fish survey   |
| Sediment          | рН                                     | Pesticide              | Fish community      |
| toxicity          | <b>Σ11</b>                             | effects on crustaceans | 1 ion community     |
|                   | Sediment particle size (Sedimentation) | effects on             | VEC impacts         |

# **Research Questions**

- 1. Sediment transport models (funded)
- 2. Mobility of fishes and lobsters
- 3. Lobster settlement
- 4. Habitat creation
- 5. Benthic invertebrate study
- 6. Fish sentinel studies

# Research Questions

- 1. Sediment transport models (funded)
- 2. Mobility of fishes and lobsters
- 3. Lobster settlement
- 4. Habitat creation
- 5. Benthic invertebrate study
- 6. Fish sentinel studies

Research proposals submitted by academics
Review by international experts under way

# **Consortium Summary**

- Incorporates existing monitoring
- Provides basis for EIA
- Focuses research
- Detect cumulative effects
- Provide regional baselines
- Develop thresholds
- Define endpoints of relevance for SJH
- Develop synergies by focusing questions, combining sites
- Reduce duplication of effort

# Why a Consortium Approach?

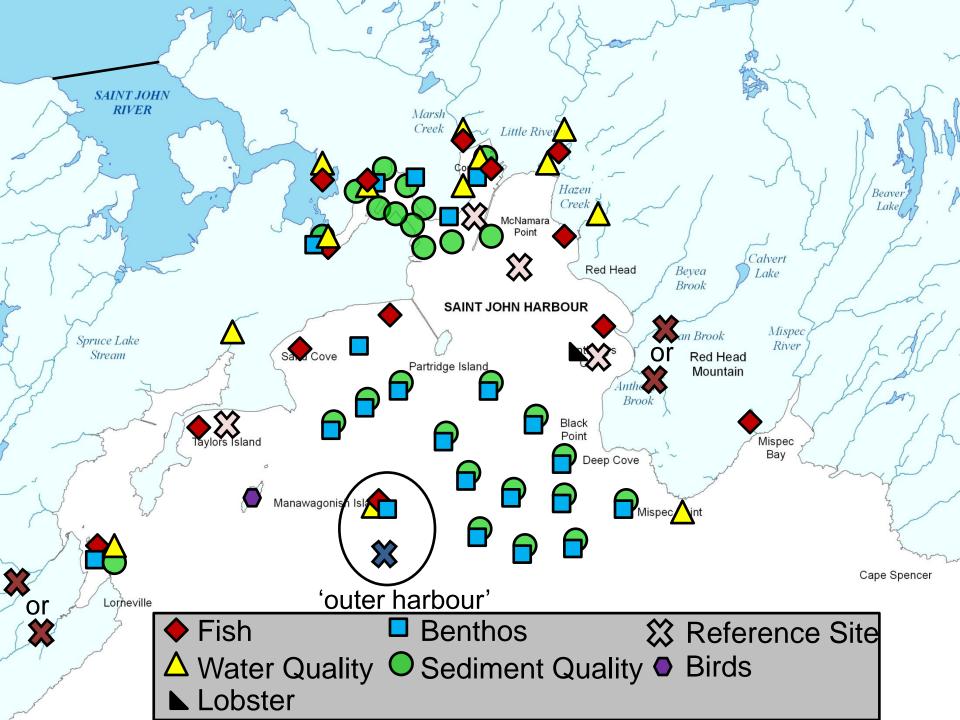
To create a venue and mechanism for multiple organizations with a shared interest in addressing key water management challenges through advancing and applying research and technology to jointly support and fund science-based solutions

Saint John Harbour is the pilot project



Data Gaps Among Studies

| Study | Year | Ref.<br>Site | Fish 1 | Fish 2 | Invert<br>1 | Invert<br>2 | Sed.<br>Chem<br>1 | Sed.<br>Chem<br>2 | WC 1 | WC 2 |
|-------|------|--------------|--------|--------|-------------|-------------|-------------------|-------------------|------|------|
| Α     | 2005 | 1            |        |        |             |             |                   |                   |      |      |
| А     | 2005 | 2            |        |        |             |             |                   |                   |      |      |
| А     | 2005 | 3            |        |        |             |             |                   |                   |      |      |
| В     | 2006 | 1            |        |        |             |             |                   |                   |      |      |
| В     | 2006 | 2            |        |        |             |             |                   |                   |      |      |
| В     | 2006 | 3            |        |        |             |             |                   |                   |      |      |
| С     | 2005 | 4            |        |        |             |             |                   |                   |      |      |
| С     | 2005 | 5            |        |        |             |             |                   |                   |      |      |
| С     | 2005 | 6            |        |        |             |             |                   |                   |      |      |


Missing data: big problems when building regional datase



# Data Gaps Among Studies

| Study | Year | Ref.<br>Site | Fish 1 | Fish 2 | Invert<br>1 | Invert<br>2 | Sed.<br>Chem<br>1 | Sed.<br>Chem<br>2 | WC 1 | WC 2 |
|-------|------|--------------|--------|--------|-------------|-------------|-------------------|-------------------|------|------|
| Α     | 2005 | 1            |        |        |             |             |                   |                   |      |      |
| А     | 2005 | 2            |        |        |             |             |                   |                   |      |      |
| А     | 2005 | 3            |        |        |             |             |                   |                   |      |      |
| В     | 2006 | 1            |        |        |             |             |                   |                   |      |      |
| В     | 2006 | 2            |        |        |             |             |                   |                   |      |      |
| В     | 2006 | 3            |        |        |             |             |                   |                   |      |      |
| С     | 2005 | 4            |        |        |             |             |                   |                   |      |      |
| С     | 2005 | 5            |        |        |             |             |                   |                   |      |      |
| С     | 2005 | 6            |        |        |             |             |                   |                   |      |      |

No missing data: meaningful studies Value grows with time



#### **Process**

- Step 1 Workshop
  - ID major stakeholders, barriers, common interests, geographic scope
  - Develop terms of reference
- Step 2
  - ID existing monitoring programs, rationale, requirements, and overlap
  - Identify potential regional reference sites

#### **Process**

- Step 3
  - Identification of
    - monitoring requirements that
      - overlap spatially (same endpoints)
      - could shift to increase overlap (different endpoints)
    - reference areas that could shift to provide overlap
    - potential and anticipated developments
    - upcoming monitoring requirements
  - Development of data concerns and desires
  - Create map that overlaps monitoring, potential development, reference sites

- Pooling/sharing resources
  - More efficient monitoring
- Developing regional standards, methods, etc.
- Process for large scale monitoring
  - Regions, watersheds, political units

# Step 4

- How will CE be detected
  - Review available information on ecological thresholds, triggers, etc.
- Identify key reference sites
- Discuss data gaps
- Develop science questions
  - Develop key focus and questions for decisionmaking around effects and cumulative effects

| Effluent toxicity    | Temperature                            | Metals                               | Mussel contaminants |
|----------------------|----------------------------------------|--------------------------------------|---------------------|
| Air emissions        | "Coliforms"                            | PAHs                                 | Lobster settling    |
| Water levels         | TSS                                    | PCBs                                 | Benthic community   |
| Current              | Salinity                               | DDD                                  | Adult fish survey   |
| Sediment toxicity    | рН                                     | Pesticide effects on crustaceans     | Fish community      |
| Seabed<br>morphology | Sediment particle size (Sedimentation) | Brominated and fluorinated compounds | VEC impacts         |
|                      | TOC                                    | Body burdens                         | Species at risk     |

#### Step 5

- Meet with key stakeholders individually to discuss their specific needs, specific upcoming monitoring for 2011 and 2012
- Identify potential resources or partnerships for site-specific data collection

#### Step 6

- Discussion of framework
- Presentation of refined list of science needs
- Identify existing resources and resource needs
- Prioritization of data needs

# Acknowledgements

- Canadian Water Network
- Canadian Rivers Institute